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S{ 1. Introduction•

_ .U ,This semi-annual progress report contains a summary of work accomplished on 0. N. R_

. Contract NC0014-86-K-0370, High Resolution Radar Imaging, during the period from I
December 1987 to 31 May 1980.

The goal of this project is to formulate and investigate new approaches for forming

i nages of radar targets from spotlight-mode, delay-doppler measurements. These measurements

c•uld be acquired with a hig,-resolution radar-imaging system operating with an ootical- or

radio-frei-uency carrier. Two approaches are under study. The first is motivated by an
image-reconstruction nmethod used in radionuclide imaging called the confidercp-weighted

algaritihrm here, we refer to this approach as the Mirp-rare modulation appmaxh. The second

approach is based on more fundamental principles which starts with a mathemrtatical model that

accurately describes thi physics of zn imaging radar-system and then .rses statistical-estimation

theory with this model to derive methods for\ producing target images; we refer to this as the- ~

esfimation-iheory approach.-~ 7

Fig's. 1 to 4 summarize a broad context in which forming radar images is important and
the way in which the methods we are developing may be useful in this czntext. Fig. I depicts a

IT
WS Blay-DOP~er iL2ý!AE ___

?adar Da=-"

Figure 1. Radar imaging System

A radar transmitter/receiver illuminates the target with a series of
pulse and obse-es echo-data containing delay-doppier informa&in
These data are processed zo form an image of the target.
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radar imaging system. Shown is a single target, but multi-target and clutter environments can

be accommodated as well. Images are conventionally formed by processing data acqui'-ed with a

series of target illuminations using chirped-sinusoidal or stepped-frequency waveforms. The

fi •usual two-dimensional Fourier trans?.om processing, described by Wehner [1], is bassed on a

deterministic model in which there is no randomness in tre target's reflectivity and no noise in

the radar data, an idealization which is often not met in practice. Another form of processing,

described by Mensa [2], is based on tomographic principles and is AIso based on a deterministic

model for the problem.. The chirp-rate mcdulation approach which we are developing is based

on tomographic principles; it extends the approach described by Mensa through the use of a

variable chirp rate, as f irst described by Berafeld [3] and Feig and Grunbaum [4], so that only

LIZ• small angular rotations of the target are necessary for forming the image. Oar tomographic

metiod is based upon devlopments in radionuclide imaging and differs from that of Bernfeld,

Fei2 and Grunbaum in that we can accommodate practical ambigvity functions that do not yield

the ideal line integrals required with the usual tomographic approaches they employ. Tbe more

. • fundamental esiimation-theory approach which we are developing uses a target model that

- accounts for diffuse, random reflectivity and for noise. The image formation process is derived

P mathematically using statistical-estimation theory. The new processing we obtain is more

complex and 'tomputationally demanding than- either the Fourier-transform or tomographic

- approaches, but improved images can result because it more accurately accommodates the

physics of radar imaging problem. At the present stage of our investigations, we are not overly

_ concerned about the computational load of the approach because the equations to be evaluated

,.j % . are qcrite amenable to evalua!ion on massively piartlel computing arcimtectures.

We are beginning to evaluate the- performance of the estimation-theory approach in

comparison to conventional Fourier transform processing. Only an extremely preliminary result

is available now, but we include it to indi-ate what we hope the gains with our method may be

-4.• tas we compleme a more complex evaluation- Shown in Fie. 2 are the average results obtained

from 3000 realizations with a computer simulation in which a single point-target of unit

scattering strength (Le-, random reflectivity with power 2 = 1) is illuminated with a sinusoidal

pulse.
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Figare 2. Performance Comi,''n for a Point Target

• " • S•K-own wre the output signal-tcnoise ratio and bias for estimating the

sctmig fund~cn of a point tr-get -w.ith a peeriodogram and with theesqn-thecry method.

- i .•.L.own• 2_e the bias, deffiled by

. • ~BIAS = E[P']- a-"

a-x -e •put signal-to--noise ratio3, deffined by,

• • ~where MSM -: the m.•.•-•L.,-e de._- _finedl ty

MSE [-c I LI

The input sigrn-L--i-•-• -•; efio is de.Freed by
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where No is the power density of additive receiver noise. The scattering strength of the point

-arget was estimated usins a Fouri.er transfo-m method (periodogram) and our estimation-theory

method. For input signal-to-noise ratios above about 5 dB, the peri-,dogram estimate is strongly

biased and has a low output signzl-to-noise ratio. In this same regime, the estimation-theory

method yields an unbiased estimate with about a 15 dB greater output signal-to-noise ratio.

While this is an extremely elementary example, it does give us some optimism that the new

approach will result in improved inmges compared to the Fourier transform approach when

applied in more realistic situations-

Shown in Fig. 3 is a target identification stei that uses radar images to aid in the

I IFEATUR" I
FA U TARGET TargetI

= "--" EMTACTION IDSTHAIN Type

Radar L~i~ 0 ~j IDENTIFICAT ION TpRadar &

i ii
TARG-ET CCOLLATERAL

TE-MPLTS INFORMATION

Figure 3. A Target Idetimflotion Sy)stm

Sh own is a system in which targets are identified on the basis of
features exrwac.d f.rm radar images of the target, target templets, and
other collateral information.

identification process. Such a system commonly starts with an image formed by the

Fourier-transform method. Features such as edges, regions of simila texture, and shapes am

extracted. These are then used with a catalog of possible targets and other available

information, such as target-track data, surv'eillance data, and target environment, to identify the

target type_ Since the identification process will be aided by having improved target images

from which to extract features, we expect that more reliable identification will resut when

images produced with our estimtion-theory method are used. Note that in this system, two

separate and independent steps are involved, that of image formation followed by that of

feature extraction for target identification. One may expect that combining these two steps in a

unified manner should result in further improvements in identification.

• -4-
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Shown in Fig. 4 is a potentially improved target identification system in which images M.re

1

,-{I Display

Image
• • •. ON•T•REN t- TARGET1

Dek-y-D ..p er F ItitA -G . - Target
---- Radr Datae -F E --'TRACTION IDEN'FICATION i Type
Radar Data

ARVU-BASED & TARGET COLATERAL I

IISTAMTM-Sf-BASSED TEMPL-TS NFRMAT3O0J

Figure 4. A Unified Target Imaging and Identifiation System

5Shown is a system in which targets are imaged and identified in a
coordinated manner in an extended estimation--theory method in which
rule- and statistic-based constraints are reccgnized.

formed and features extracted in a combined, unified manner. This is tccomplishpd by

incorporating constraints during the image formation and exrxa~un .p"c= -- myv

be rule-base,, such as to enforce curvature rates en edges and closure of boundaries. or

statistiz-based, such as roughness of texture and prior statistical knowledge of the targeL The

estimation-theory approa.-h we are- developing is ideally suited for incorp,,rating rule and

statistic based constraints in a single, coordinated process that should result in improved target

identification-

"At the present .ime, research under this contract is focused on two methods to improve

target images. Such improvements would be useful in the bread context of target identification,

particularly for the sa-aratoed identification system of Fig. 3. In o.ar laboratory, a strong

research effort on image estimation subject to ruls- and statistic-based constraints has been



= ,-I ~ =- -

initiated [5], with a view towards impsementations on highly parallel computer architectures.

3 We envision that these developmepts will be important for a unified target imaging and

identification system in the form of Fig. 4.

2. Summary of Work Accomplished

2.1. Estimation-Theory Approach to Im.iging

Progress daring this reporting period has been made on: a, extending the estimation-theo-

ry approach to include a specular or glint compoaent in the radar-echo data in addition to the

diffuse component presently in the model; b, analyzing the performance of the esdimation-theo-

ry approach both analytically through Cramir-Rao bounds and with simple computer-simula-

tions; c, extending the estimation-theory .'oproach to accommodat constraints on the received

signal-to-noise r..;io; d, identifying analytical conditions for the uniqueness of images produced
with the estimation-ticary approach; and e, addressing how radar signals should be selected to

form good images. Each of these areas is described briefly below and more completely in the

appendices.

2.1.1. Inclusion of a Specular Component

The estimation-theory approach to imaging which we have developed to date is based

upon targets having a diffuse reflectivi-ty with no specular or glint component; the reflectivity is

modeled as a zero-mean, complex-valued Gaussian random process 161. We are now developing

an analogous approach for targets that are described by a collection of purely specular

reflections with no diffuse component. The model we are using and a status report for this

effort are contained in Appendix I, by K. Krause.

0 2.1.2. Performance Evaluation

The estimation-theory approach to imaging yields an iterative algorithm for producing
target images [6]. As a result, the performance of the resulting images is difficult to predict

analytically. For this reason, we have recently developed a Cramir-Rapo lowr bound on the

mean square-error in estimating the target's scattering function. This is discussed in

Appendices 2 and 3. Another apprtach we are beginning to use for studying the performance



and for making compariSoDs to alternative image formation strategies is computer simulations.

ji These are very demanding computationally. Our first results are, therefore, for very simple

special cases. These are discussed in Appendix 2.

2.1.3. Forming Images Subject to a Coastraint on Input Signal-to-Noise Ratio

We have extended the estimation-theory approach to include a specified input

signal-to-noise ratio. The result, obtained by P. Moulin, is disc-ussed in Appendix 2.

'.1.4. Conditiops for Uniqueness of Target Images

Conditions for the uniqueness of target images formed with the estimation-theory method

have been identified by J. O'Sullivan in terms of the Fisher information-matriz and the

Cram~r-Rao bound. This is discussed in Appendix 3.

2.1.5. Signal Selection for Target Imaging

An effort has bean initiated to establish a method for determining good radar sigvalsh to

transmit for delay-doppler imaging. Preliminary results, obtzited by J. O'Sullivan, are

discussed in Appendix 3.

2.2. Chirp-Rate Modulation Approach to Imaging

Work is continuing on the chirp-rate modulation approach to imaging. Using

xmaimum-likelihood estimation, the processing to be used on radar-echo signals has been

Sidentified when a linearity constraint is placed on the processing. This confidence-weighted

processing consists of a bank of bandpass matched filters followed by additional filterinz

I -W specified by solving a set of normal equations. These equations are valid for a variety of

modulation formats, and we are presently --pecialing them for the stepped-frequency

w-aveform so that we may compare the processing to conventional two-dimensional Fourier

transform processing.

3. References
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4. Appendices

I 4.i. Appendix 1. Imaging Specular Targets

Maimljm-Lik-lihood Approach to S~pecular Im gi

Keuimetii F. Krause
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* I E. Krause

June 9, 1988

STATUS REPORT:
SMAXIMUM LIKELIHOOD APPROACH TO

SPECULAR TARGET IMAGLNG

The following describes progress in statis-t-ical model formulation and imaging
-m approach for the Maximum Likelihood Estimation based imaging of delay and

Sdoppler spread specular targets. That is, targets composed of multiple
reflectors, each of which is characterized by a s-ecular reflection process.

- According to Wehn.- (ref. 1) the reflectors on such targets may be thought of as
* having the following properties: reasonably constant reflection amplitude with

respect to small aspect change, rapidly varying phase with respect to aspect,
_• • and weak (for this effort negligible) relationship of echoing area to frequency.

gr Target Model The target is assumed to be composed of an array, in the delay-
doppler plane, of specular reflectors as described above. The generic return
from each reflector, with attributes sufficient to capture the aspects of Wehner's
properties* k vo•_rs•lated. it is

I"-.------

-I Sr(t Gam, Brn) = 4J2Et Burn f(t - -%) cos [ Ix(fo + fm)t -2nfo'rn + ý(t-tg) - 0nr]

where t is the co.tinuous time variable, r. is the scatterer delay coordinate, fm.
is the scatterer doppler coordinate, E4 is the transmitted signal energy, Bnm is

_ the deterministic amplitude of the reflection coefficient, f0 is the ra-a carrier
- frequency, f(t) is the ampmltude of the modulation's complex envelope, 0(t) is the

phase of the carrier modulation's complex envelope, and Onm is the random
phase of the reflection coefficient. Phase 8rnm is assumed to arise from the
foillowing probability density given in ref. 2:

exPlm 1--0S((rnm)
-,-<o(Anm) -<Onto < 7

is a c-onsmsnt which can be adjmsted to model the apriori knowledge of the
randomae-s• of the pihase va-riations. A vaiue 0 implies a uniform distributi.-,n

B • -10-
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or nothing known about. the phase and a value of infinity implies the phase is
known

Imaging Approach The received signal available from which to form images
is a sum of reui'-ns from elements like those described above located at an

-rray of locations (Tn,fm) in the delay-doppler plane. This signal is corrupted by
radte =hte gaussian noise. iThe received signal may thus be expressed in

terms of the generic returns from individual scattering elements as:

* N-I M
Sr2D(t;e,B)= Y sr(t;Snm,Bnm) + W(t 0<Z<T

n=O m=-M

N is the number of discrete delay coordinates where s•catterers exist and M is
the number of discrete doppler coordinates on either side of 0 at which
scatterers exist- w(t) is the additive white gaussian noise.

The desired image is the maximum likelihood estimate of the magnitude of Bnm
e• at each point in the target array.

STechnique I By making some assumptions on the relation between T and the
doppler resoiutioa and by restricting the class of allowed complex envelopes
somewhat, a likelihood ratio can be derived which has the form of a product.f
ref. 2's likelihood ratios for the detection of known signal with an unwanted
phase. Thus, the 2,D imaging problemin may -educe in level of complexity to that

- of estimating the reflection magnitude of a single generic target. To date, the
form of the solution for case Anm=O and Anm approaching infinity have been
investigated. A relatively simple expression results for the latter case
(corresponding to phase known exa-c-t'ly),- For Anrm=0 fph2e uniformly

distributed), an expression containing modified Bessel fanctions of the first kind
and orders 0 and I results which would have to be iteratively matched with. a
linear function of their ar-raments to converge on a solution The case for An m
arbitrary yields even more complicated express:ons which would have to be

III! • solved using computer iterations.

Tc-hnique 2 Currently, the EM-algorithm of ref. 3 is being investigated in
quest of a more t-actable iterative solution to the problem. The first and most

=" obvious form of the complete data space. model looked at in this regard appears

to have a degeneracy which practically would cause the accumulation of time
samples beyond the first 2 to not be meaningfully used in the estimation
procedure. This will be rechecked. T'1he next step, currently in work, is to look

S~- ii -
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for a new complete data spa-. model which will provide meaningful utilization
of all data with improved tractability over Technique 1.

i. D. R. Welhner, High Resolution Radar (Artech House. 1987)

2. H. L. Van Trees, Deieczion. Estimation, and Modulation Theorn-ParT I
(W-iley, 1968)

3. A. D- Dempgter, N. A& Laird, and D. B. Rubin, -Maxdrnum. Lik-eliood from
Incomplete Data Via the EIM Algolitm,' 1. of the Royal Statisticsa. Society,
Vol B, 39, pp. 1-37, 1977.
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4.2. Appendix 2. Performance Analy-is, Forming Images under a Power Constraint

I

Petformance Anysiss for M-aximum-Like-Lhood Spemmmu

Pierr Moulin

Donald .1- SnY&r

ja~eph A. £Ynulivan

Tbis appendix contains a preprint of a paper in review for presentation at the 1988 Allerton

Conference to be held at the University of Illinois, Urbana, IL

i
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Performance Analysis for Maximum Likelihood Spectrum
Estimation of Periodic Processes from Noisy Data *

D. L Snyder
J. A OSi,.cn

FDectronic ytm and Signals- Rasear-ch Laboratory
Department of Electrical Emnineg

WashigtonUniversity
Saint LoLns, MO 63130

L- Inrocluction

pA .-oisg approach to mxmum-elihooi estimation of Toeplit constrained covaroance
matr-ces has been pronosed recently ill. Severa! developments can be considered- F-irst, this method

-s a n•he a to the dal moblem of sDect;= estimain Another issue of interest. is that the statistical
model can account for the presence of additi unise corrupting the observations and for linear

aransfruaions of the process whose covariance or spectrum is sought These considerations
motvated a new a.proachf to high- m tion deay-doppler radar imaging, where a major goal is to
produce estimates of the targes scaueing function 9. In the special case where the transmiuted sig-

nal is i constant and there is only one delay bin, this reduces to a spectrum estimation problemý This
pape- de-scibes some recent results obtained for this simplified problem.

- .-. Our model is presented in Section I A ma-r um-tileaicod fmuhiation of the .rb'Aem is givez

in Se.tion 3, and it is shown how the equations can b& solved- Section 4 is the main section- The sta-

tis.ua performance of the estiao is stufied, and it is shown bow it compares with more traditional

methods such as the pm odogrr-.- The results are encouraging, and future directions for reseamh are

3 ~proposed& One such direction consiszs of using a priori information on zhe sig Nal hen this informa-
tion is in the form of a constraint on the signal pow-er, a new estimator can bee derired by maximizing

the aiehood subject to that constrzint. Theoretical issues of exsece and uniqueness of the solution

are discussed in thre lwst sectin

2. Model

"V- We now present two models for the spectrum estimation problem. They "undamentally differ in
that the first one accounts for noise corr-r ting the orvaions

2.1 Model I

"This fo.5oýs from thf. model presented in •2, when the uansmitted n.nal is a constant and only

one delay bin :s considered. Let r be an N-vector sample of a real Gaussi2n process corrupted by an

additive white Gausian noise :

r b-+w. (2-1)

-where

w•is an additire whitenoise with covariance matrix ,Ov, uncela with b. where .- is the

_~NXIN idenltity ma=ix

-14 -
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b is made of sam .les of a Gaussian pe,.odic rocess with period P > N.

Both b and w are zero-me3n T1he pi-..odcty ." mption r -arantees that the likelihood function is
bounded above; therefore, there exist a ma6ximum-likelihood estimator 'I. The assumption also
implies the covariance matrix KP for a fal period of the process is a Hermitian symmetric. circu-
lant, Toephit matrix. Its eigenvectors are celumns of the PXP DFT matrim ;V.. so

=Kp --- A Iv? , (2-2)

where supeerscript, - denotes the Herniuan-utnn--pse i -ema-or on matrices, and Ap is a PxP real diag-
onal matrix whose dia-onal entries are ueannegative and are spectrum samples.

Assume now that we are only- interested in estimating M of the P spectrum samples ( < M <
P), the other s.nectrzm samples being Zero. This assumption is introduced to deal with the bandlimited
spectra encountered in radar applications V. We define ;te diagonal matrix of spectral parameters E
"by

AP .1~Av (2.3)

0 0 IM-ihP-]J
wer

and !turin and Itu-1m are res.ectirel. the 1(M1)/2 X (M-1+1)/2 and the (M-11/2 x (M-1)/2 identiy
mazurices_ For simplicty, we cctsider' M to be odd. Only the first (."1)"2 and the last t.\(-1),2 diago-
nal entries dof A. are nonzer-o, and these def.ne the diagonl entries -(21)of the -IxM diagnal matrix

E.The c•N ovriance matrix 114 of b is the z•e- left cor-ner or Kp. From {2-0) and (2.3),

f g I= r~r, (2A)

where we de-ne the MYN matrix to be

09F =.x~~t Op. (2-5)

The corariance mat-ix for r is then given by

K = IE•-t No&.i. (2.6)

2.2. Model 2

ON in mos sDectrum esamation ovonlems, it. is assumed that the observations are samples of the
Sprocess of interest. This is also the model assumed in III. This is a special case of (2.) in which

,= b. (2-7)

From the defiiions in (23) and (2.5) forI E and r. :he cova iance matrix for r is now given by

3. Spectrum Estimators

In our simulation in the new secton, we compore the performance of three esimaýos for the
spectrum >f the proce b given r from equation (21). These three estimators ae presented in tis sec-
tion. There are two maximum-lIkelihood estimators derired from models I and 2. and denoted by
MLI and ML0, respectiveLy. The third estimator is the perioogram.

3.1- MLI F mstimator

Tis estimator is derived from model L. Following the formulation in "', the equation for te
received signal can be rewritten as

r = Fc + , (3.1)

-15-



where c is a zero-mean Gaussian random vector with diagonal covariance & The likelihood function
for K,. is

L =-,) In detK, - 14r' r - 3.2)
From (2-6) and (3.2), the lielihood function fcz E is

LrZ) In de-t (Th'+ NJ-v) - - r r- X r r (3.3)

Maximizing the ikelihood with respecit to E yields the necessary rmace condition which the estimate
must satisiy [122]:

nr [. Pr + N0 I4'F( 37 -rtrr -- N04tlXrr + o;I•-• r•: = 0. (3.4)
Sfor al M.MX diagonal matrices 61. This trace condition is•a nonlinear equation in E- Cneraelyt h can-

not be soh-ed directly in zlc*sed-form, so some numerical search procedure must be implemented An
elegant --dution is the ernpectation-maximization (EMI) algorithm used in :1.2. An initial esiat
SisselectedL.At step k+ (k = 0,1,.-) the estimate is updaed accordin- to

. u= -W ,rg • z (3.5)

where

M -.. M-4
SQrI!')l=. i Ej2 (,1- I el 11 2 1 ,-.0"] /c2(.)1 (3.-)

and

El If C,(,112+.(• I•J (n :- 1r- N

* This algoithm produces a sequence of estimates

-- _i). •( ) = Lj !ci• l,,i! (3.S)

having micreamig l•keh!hood- h can be shown that the smable points of this algorithm satisfy the ne--e-
sari' trace condition for a nzaximier '2 The issue of uniqueness is addressed in a companmin paier

Spa case:= = = p= , I =

A clo-sedform exp•rasoa for- E can be derived in this special case

-) = m3o.r -N.). (3.9)

3.2. MLO Estimator

W-hen model 2 holds. the equatio•f "or the re-eived sjial can be rewritten as

_.= . (3.10)
where c is a zero-mean Gznssian random vect," with diagonal covariance S- From (2.8) and ý32), thr

Slikelihood function for ! is

L(r,!r) = -%& In ~iet, ri--T) - ~rii~.(.1
-As fbr model 1, a mace condition ror a maimizýer of the likelihood can be derived- The EM algorihm
can also be used to solve this nonlmner equat" in S. The sequence of esimates is still given by (3 S),
where now

Clearly. MU and,-- MLI are equivalent for noise-free problems (: =0).

Spccir case:-1 -
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The proble.m for -_-ch the number ol obserratios (N) is equal to the number of parameters to
Sbe esimated (M) is cC some prae-ical interest- it zso turns out that the trace condition can be solzed

a closed-form in this instance-. Te matr- i" :s then invertible. Equztion (3-10) indicates that there is
a cne-to-one mapng between r and c, and the X.O estimator is siimn -

S(i) = i(r-Xq2 . (3.12)

Te .--perio---4-ga esaimaitef the P-spectz-m of the periodic process is simply the magnitad-e-
squa-zed Fourier transform of the obsratis i4,

we -•=(P/.;N') W" [4t, •.and (3.13)

-A-m-e w ae lo-ingo*at hefirst M spectr.um samples-Te. frm(.)(25an (3-13). !ý- is

&(i)= (P/N\) IF-- rXii (3.14)

Special ewe: N= M= P
Whea N = M = P, the matrix r is equal -o Wp and pear;odogam and MLO estimates are the

s.me- In tbis cas. a f-Ul period o" the proem is -stim-•ted

4. Performance Analysis

in this sec•o•. we apply the three emmators presented above to model I and study their satis-
x-ic perfjo-mances The bias and varimce •ae evaluated for earh estimator. where

= %4-11

Vef.-ý =ET- -- .Ejý; (4-2

As we shl see in Section 4-3, the s•nerfc-n nce s-rong!y depends upon the inpLat signal ;o noise ratio

SANs.- = E-o / N (4.3)

--here E is the average power of the proces, defined by

_4Eo = (0) = (L/P) Tr '.j. (4.4)

From (4-1) and (4.2), we derive the diagonal mean qua-er: error (MNSE) ati

MSE IZ] = Van_-"), Ver-2 (Bjs,•)e. (4.5)

The output signal to noise ratio matrix is defined as -foLw'-:

S.NT-R,~Irl = r- (MUSE ~) 4

in the fogowinng seecton, we evaluate the bias and mc;-n-squared enrro for the estimat--rr -erived
m Section 3. Vhene'vz-r clsed-o.m expressons for the ML estiimaes cannot be derived, computer

lz.tos are performed. Typically 3000 re aliaios are g-aerstPA for each procer For a given esti-
mator, (4-1) and (4.6) are then estimated from the 3M estii-ates.

4.L Performance Analysis

Closed form expressions for the bias and mean-squa- -d error are derived for MLO and the
i peiodogmm when they e.ist. Simulations were cai.ied out .o compare the performance of the esxi-

mauns for va-ious -kvels of input SN'R. The perfo3mamte as then compared to the Cramer-Rao

;~- 17 -



Lower bound for the variance of unbiased estimators. Much effort was made for the special case M =

N. Th1s przovides insight into the problem since the MNIL equations can be solved in closed form. The
choice of P is free, so long as P > N M.

4.2. Closed-form Expressions for Estimator Performance

(a) M-L1

-As indicated in Section 3.2. no closed-form ex.ression for the estimator is available, so the
evaluation of bias and variance is obtained b. computer simulation.

(b) MLO
Closed-form eomresions for .MIL zan be derived when M = N. The results are presented beloow_

Bias

f 51Taling the expectoaio of (3-102) and using (2.6), we get
S•!2(.) = •F(,i) + Nol '(4i (41.7)

so we have

= NoiT~~4i).(4-8)

The bias is due to the nois_ cor-uping .-the oservatins and is proportional to N0- The sensitivity of
the bias to the noise is determined by the diagonal entries of the ma-rix (W)'-.

=' - 2.feai-Szear• d Error

C.o•bining (3.1) and (3.12), we can write

All = !(c + ,-a. (419)
Taking the expectation of (4.9) squared, we obtain

In4- ,))PIN = e(,. (_2-,:5..) No -;,]t ( -11r•(4,--} 2M5 R. Pefrl(4S)-7
j-0

M--- + N ( 2(rr•)-(ii,2 + 1!' r-(z•"-)-2 ) {-.1:)

.AIter some algebraic mmap.ulations, this expressoo can be lower-bounded by

From (4.7) and (4.10), (4.5) becomes

MSE (,)j = ( E(0)] ) + (No (fVrr (4,0 F , (4-11a)
!3and

. MS-E a)] Ž c(i) -2 o2(i) No 'T!'i) + 2 (N. (l" "(zi)). (4.11b)

(c) Period-ogta

Combining (3.1) and (3114) we can write

�(i = (P/N) I (vc + r }-xi1. (4.12)

Taking the eoqectation of (4.12), we get

and -(,)I = (P/ N) (rrIT i + N-, 1-rr X.. ( 4. 13)

- 18-



Bia(i](:J ( (P119 (1r717r1) - E X•i + (P/Nj N0 (rrxi0. (4.14)
The bias is made of two terms. The second one is due to the noise and is proportional to N0 . The sen-
sitivitY of the bias to the noise is determined by the diagonal entries of the matrix r'l. The first one
is independent of No- Even for noise-free observ-,tions the periodogram is a biased estimator of ESvunless WT is the identity matrir This would be -he case only for N ='M = P (observation of a full

W period of the process) or N/M -- ca.

Mean-Sqriared Error

Taking the expectation of (4-12) squared, we obtain
1- 1 -- f 1 - -1-.v -i T

= (P/NajilyOl ((rtrl1wq4 0 YD 2 j I (i xi,; 32 (Tx.-i~i)

+2X06 (+ X -if

+ I£M() (I-X4 0)f +Z. 2(M4P) (lIV)4MP2)2 - Ne 1`143-P)2 I i - (4. 15a)

This expression is lower-bounded by

2- lP/2 [ (1rTtEIV + N•0 ITX•," f = 2 ( Ej-(,)] P (4-15b)

From (4-13) and (4U5). (4Z5) becomes

and . K P (:)] f + I (PI/N OTV T - (NiP) r ÷ ovxi.,) j, (416a)

MSE 2!0 (>Pr/.) ( [(MT%- TiT f + (MT-r..ITV - (NIP) EXi '1

+ 2 N0 (rTtX ,) 12 (2 ! ITt - (NIP) EXi,,")

+ 2 1 No (i--Xii t)f (4.16b)
"-• ~ 4-3. Sim~ulation results

Proc= I

P Here we consider a lowpass process of period P = 10. There ame M = Z nonzero spectrum sam-

o1{=i) =I i = 0,..,4.

The number of observations is N = M = 5, and the noise variance NO ranges from 0 to 1. Figures 1
and 2 give a plot of the bins and SNVRl for the estimators of -•(2) irt function of SO., accordiag tc
the defmitios (4-), (4.3), and (.4 B) In the absence of additive noise ( S•V7?.,, -- cao). ML1 and ,LO are
the same. Both are unbiased estimators. The periodogram, however, is biased, and its LSE is alsc
larger than the MSE for the .L estimatsI-. When No increases from 0. ,he performance of tie eszi-
maors is roughly constnt so long as S..VN,. remains above some threshold For larger 0 , aL three

P estima-to exhibit a strong degradation in performance- Comparing the thresholds ior *NLO and ML1
we see the tremendous improvements brought by taking the noise into account in the model- Typi-
ceavly, for a same S N1, ML1 will have the same performance as ML0 operating in a 20 dr3 noieS • environment.

We also notice that the threshold for the periodogrna is located at a lower SAWiR, than for the
,ML estimators. In Sections 42(b) and 4.2(c), we indicated how the sensitivity of the performance to

the n6se can be determined for O and the peeriodogzram when N = \i It turns out that fc. the pro-
cess considered here, with a uniform spectrum, the periodogram has a lower sensitivity than MA) and
MLI. This is thoughtto be due to the smooth spectrum used in the simulation.

Proc.ss
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It has been conjectured that the periidogram does not perform well for peaky spectra t5'. This
mo.•t-vated our std-y of a sharply peaked spectra. The process has period P = 10, and is made of a sin-
gle spectrum component

oC (0) = 1.

There is just N = M = 1 observation. Bms and SNR,. for the estimators- of o2(0) are plotted as a
function of SNP- in figures 3 and 4- In the absence of additive noise, the periodogram is very strongly

Sbiased, an its MSE is large. Furthermore, in high-noise environment the periodogram is no longer
more robut than the !IML estimators. Clearlhy, the periodogram is outperformed- It should also be
noticed that for this process, the improvement of NL1 over MLO is quite reduced.

SConputational Consifer-ations

The convergence rate of the &M algorithm depends on several parameters. The computation
time for each iteration is of order M N. The number of iterations required for convergence of the

Salgorithm grows as M and N increase. For MLI, more iterations are required as N, increases, espe-
cmilly in the threshold region and beyond. Typical figures arem for process 1 with N0 = 0.1, 30 itera-
tions are required before the spectrum estimates are stable; when NO = 1, 300 iterations murt be per-
formed. Our algorithm is implemented on a Masscomp model 5500. Running the program on 3000
realizations in dte latter case is typically completed in 6 CPU hours.

4.4. Cramer-Rao Bounds

In this section we study how the performance of the estimators considered so far relates to the
Cramer-Rao bound on the variance of anA unbiased estimator. The Cramer-RPao bound on the vari-
ance of any unbiased (UB) estimator of a (i for our model has been found to be [31

T j -CQR(s)V = (o2 (t) + No(IW-(i,t)c. (4.17)

From (4.5) and (4.17), the MNSE for an unbiased estimator reaching the Cramer-Rao bound is given by

ME-&"("I] = (0 2(21 + No(1 F,(4i,). (4.18)

The Oramer-Rao bound on the variance of a bised (B) estimator of a- (i is given by

B-GR[&2 (,I] = Tj--Gc•[(TI ( aE[•j(,)I/o(, )2r (4.19)

_ From (4.5), (4.17) and (4.19), the- MSE for a biased estimator reaching the Cramer-Rao bound is given
by

.MsE'(i)] (o2(.-) + ,,,o(l•)-A(;z-) ( a8-•(:]/a;=(: )2

+ (Bias',e(])D. (4-20)

From the analytical expressions given. for Ei&e(t)] in Section 4.2, we can now calculate the gradient of
EW0")] for ML0 and the periodogr- Then the minimum MSE for a biased estimator having 2-he

same bias s flo and t he periodoram is derived, and a comparison with the actual MSE is made No
S - -closed-form expression has been found for .•L.

i&,

From (4.7),
Sa ,.21)

From (4.S), (4-20) and (4-2), the MSE is lower-bounded by

+AfsE•&()] = c(,) + ( N0 (IT')-(i,) +2 T N0; (T)',I0 ..= (4.22)

Pcradoognrm

From (4.13),

8E-•(,)]la•(i) = (P/IN) (T:I')I -z (4.23)
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Combining (4.14), (4.20) and (4.23), the MSE s lower-bounded by

N (SEO. ISý(i = (P2/Ne) ( [(rir"rrTX4) 2 + (rr+ rr' - (.YIP) X ,)2'
+ 2 No (rYtx, j (2 rIr-ErI - (NIP) EXi,.-

2. [ No (•x•Wif). (4.24)

Comparison of MSE's twiLt Cramer-Rao bounds

The Cramer-Rao bounds (4.22) and (4.24) on the MSE are the same as the bounds (4-11b) and
(4.16b) derived algebraically- from the exact expressions (4-1la) and (4.16a). Figure 5 shows how the
lower bounds compare with the exact expressions for proces 1. The actual MSEs are 3-4 dB above
their respective bounds.

k- 4.5. Discussion

The results derived above suggest additional comments on a com!arison between peeriodov--•n
RIO and ML estimator-- Typically each component of the gradient ofE (0i] given in (4.23) is - ;h

smaller than unity for the proc•es we consider, and the Cramer-Rao bound on the variance of tf e
periodogram-like biased estimator is much smaller than the Cramer-Rao bound on the variance of
unbiased estimators. When the variance dominates the NSE, the periodogram offers then a good MSE
performance. This was the case for process I. For a more peaky spectrum such as the one choeen for

* process 2, the bias dominates the E nd the periodogra ;s outperformed by the.'.L estimators-

5. Constrained nnxi mum-likelihi'rod estimation

5.1. Description of the problem

-.An examination of figures 1-4 suggests that MII suffers in certain sitataions W-hen the input
SA7RI is low, the. est~mates are biased and their variance is large- Although the maximum-likelihood
estimator is asymptotically unbiased and efficient, these properties are not guaranteed in small sam-
ples. For the problems considered in 3ection 4, the number of samples is only equal to the number of
parameters to estmate. This limitation can be alleviated if a priori knowledge, such as SA9'j., is

available. Since No is known, such a constraint on the signal-to-noise ratio can be translated into a
constraint on the signal power thz- must be .stisfied by the maximum-tLzseihood estimates- In the fol-
lowLng we show- how this constrmint can be incorporated into the EM algorithm. The constrained esti-
mates exist, and are unique.

5--Equations

The equations efar MLI presented in Section 3.1 can now be modified as follows- Akt each step ot
Smthe EM algorithm, we maximize Q" r-) defire in (S.6), subject to the power constraint

SPE- = S, (5.1)

where EO is the constraint on the signal p•oer. The solution also maxim•zes

o,9 (5.2)
-i-

where X is a Lagrange multiplier. Taking the gpzdient of (5.2) with respect to we obtain a quadratic

equation for each spectral component

C, = E, IC(iP2 I

is calculated according to (3.7). The solution to (5.3) is
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( (I +. -- i -AC -) I-X X 0

where ]• is either +1 or -I. The equation for X is

4S-- M.(55)

q In general this nonlinear equation in X cannot be solved in closed-form.- Furthermaore, an ambiguity
subsists about the choice of the sgns 1- The latter problem is solved by applicat:,n of the fol!owing
theorem :

Theorem
.Assume tha, ,= i,..>-Q The-
(1)

Io=+ : S < 2Co 1M- E.j41v-•--/•ýC ) I
"•" =--1 :dse~

(2) X is the large- nonzero solution of

M-i

(/=O. for S= (5.6b)

,W7 F .= -Q.

X is upper-bounded by i/SCo, and the equafion (5.6a) can be solved numerically for k. No:w.e that the
particular case (5.6b) is also the solution to the unconstrained maximizon problem- Next a is
cak-uLated from (5.4. The whole procedure is repeated at each maximization step of the &X algo-

S5.3. Discussion

-An algorithm has been derived to prodace maximum-lielhood estimates subj,; to the •rowerS~consua-aint (5.t-1 Qirreý we are prepar-ing a computer implementation of this --;nrithm, a• the

performances of the consrained es:imator will be studied. As indicated in Section 5.1, noticeable
- - improvements in high-noise siuations are expected.

S~Conclusions

"- In thzis paper, we have describe our approach to s-pectrum estmation from noisy data, based
or -)n a statistical model for the observations. From this model, a mximum-likelihood estimator is
derived, and its bias and -MSE ý-re comput-td and compared with two methods that 6v .ýA take the
additive noise into account, The new estimator can perform significantly better thaz its competitors

A priori knowledge of the signal power can be intuoduced as a constraint to improve perfor
mance. Our current research activities include evaluation of the performance of the new es-nimat'r
We expect significant improvements for low SNRA. Among future directions for research, let us mer-
tion another issue of practical interest. The information about SXR7,, might have the form of in ine-
qualiq rather than an equality constraint. We believe that the method described in Se-ction 5 can
easily be modified ;o inco.rorate such a comtraint.
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f Cxame Rao Bounds for Conshrained Spectrum Estimation wt
APplcation to a Problem in Radar Imaging9M

Doa.&~L Snydr

BrocSys-ern and Signal ýR=Wzh Labcanor
Depmntm of Elecuial Eqgineeaing

woosuivw Uldy
St. Loais, M-O 63130

* T~~1his -P=n tsul ses so= rec=i thettcal r-;efmults hih -- have derixwd fix Inaximnn hblehood
4=U= CStiinuio ProbL-MS The Prartica POMCMe wIdic bas motivAte much of owr sira is a dely--
dauler radar imaging prebleoi wheae the- cjn~ 1,-,- be estimatd co~rspoods to an image of fDhe targe
F;- bis probla ik I&S !hr. s 6ang faucd ti. iaih is a delay dwe ~nil-,a vavwer s.pec=Mn, 6a~ is of h m S

FcM rel~ed probles. ;be pamme~r of inteest awe the b2g c - -es Th=-e problems =-- not alw6ays.
ani-2~ d CM goM.! of 91is pap= is Wo point OM Sawe of ft" -seswhcht~ uni:q= to td= smecni
mi m1nblatk df ithe FcUbler

The rcsllm ate presened in a rh geacmal. =d wr!e then specialid ~ rb es f iniemRev. F
pzoblem of in==es &wisussed. Tzts g ' -- also ftmxo=u~ n of fte DOZatio used rouhou fth

rmidrof the 7-The -ted stcdm cdaane the Cmaier.IRa kkiwff Nomad fror tleiaiac of

blaed esm vae Ceof d= iqnpess =;f Mairn s bieiood isued in ~ of Uthe xw spegr m n s d h 3aa
mai-of the C a-z--Rao lawer bound is dhet em s~d The fot~scieedessa problem

ML--- suc=ifiC 10 fth radar 02 M'rg prooeM. MUe =S IS Wn ahe U=tSetimud S- *Z=!h
spectnnn esu~mats hav Mnr am e.= This is azwplshe by- mknimmng 6C Cmamer-lRao b-wer

LIZ! wifa resn the- -t *l ftmal sc '- discusses fth iiv-ion:cs of tb= esetnsus
2w~ sq'gests ffurilr We&u

2 -~. Ptroblem Defmig=io
Tiher a2e ukr prnbems which =-- of interes The Erst two = red~ su cialse of it-- [ Nit, b~ eOf the
resulitsOt be-,preserzre areplcabLe to caly oete of fth soezia =ses.
!xetWp be a P ?DFT =ziy. -16--k=m=try of Wp is(1 ' in eack -hof, -pae k-bem.r
is a inerm combtaim n of 2 signal vecto and adaditv wit Gaassian noisz. T=e gm-l of each rwoble is
to find tnhe inxmmdm Mmkea~d esdimate for the power spcn= of the- deý-ied sipiil gveiw owI
obseration vzcto r.

where b is mn smuetr rple from a =ae mm~ G-aussizn pruvess with Toeplizz coarmimmc matrix Ki,
and w hs wbhe Gaussia woise with cuvztnanceNdqv. The- mani KI is neL-=-rd iD be of the- frorm

KI = Ul,0 TOT ow Iw C-11)
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where T. is a ?x? real &agoua1 matri with nomiegarive crmes hI is an NxN Ridamty matrx, anid t
denotes complex conp-gaie transpose This is ýqmmvlent to asmmmg &hm b is rtf time c * wlh c is a
zero mean Gan-ssia -.-e= vwth covariý Y. 2nd

ri WP['. (2.3)

Problem rac

r =Stb + -w, (2.44)
whem w isa2sbefrmeb is2n M ingth vecar~,

b =j u0]wIC. (2-5)

bat now there is an NxMf matrix St muhiplying b. The .=u c is zero me m- Gaassin &Estrrbuted w~it
real diagtýa co-ariance gien by L Und~rthesse p~s the covaxiance of r is K +N N~, i&

KZ=S'jm 0]WpfXWp (2.6)S= IE2

F2 = P 0 S. (7-7)

This pothef- Iac t twhfi wenN = M mdS = I,.
Problem Ie

wherew~~~ ~~~ isseoeSia~y~ =Stb +w(.)
wbemw i asbefmr, t i 2nN b sifz # alrzai, 2nd now b is asample fxvra p-oceswhose-

covanane mari is A-JRx~1R block &agtmal uith each MxM Nlock being Toelplitz Se,-r=-- .5 ixto 12
s~beoseach of length M a2nd labl theme subvecumg seqrentiafy from 0 to Iz-1- Tee coamimjari of

b (k)is give bry

K B Q -) = 1 1 m O ] W X : ý k ) W L I j9 c)
Awhere K3 (k) is de ka &4~ lbloCkof the coraiamce of h. if the-LXL matrix (Ix) isnlphe in the ka

ckqvcrl Noack of a Lz xJQp block &2goml matrEiXY, ~.then V,- m~ wii

K3 = TiXFN (2.10)

where fnhe ma=-ix T3 is defied as the- prod=c of a block diagonal iuai and S; the block diagonal matix
_ h~as II, blocks ea~ch of whfich canals WLIIm 011- FOE this pDNTobln I-- P=LIE This Muoble redD=e to fth

seconld when there is only one- block on the- ffagonal (11 = 1). Sinc each of fth othe problems is obmtand
by simnlifyii this priblem, we cm -fbb-our anenain on this =Drbiem.

We follow te- analysis in [1,2].L Let k denot either 1,2. 2,c 3. Problem k may be- resmted as flos
Assuine the observation ecto r is _iven

F = Ti*c + 21

where c is a G~assian tandoni variable- with covariac Z. and w is whit Gnsi- noise Vith intensiy
Wki. Fmdt fth mmiinm B=Mwbod estgima for- L Under tlhe ammydms, r is a Gzassian distribued

randran variableA with covarianc

The loilelbo d wfnto is (neglectig ==rm not imlvoing Z)

®r.X)-1 I n daZ~tr ÷. b1=- rtiTjI3J7 -+Nof~)-4r. (.

Taking the patia] dmk.ivamiv with resVert to X 2nd seting itto zar yields Lhe rac conditio *which a



S0126M~ m=s Weisy u!OŽ - j!!iýQCordkYi2~f~ to be- th-- 11xMm lielmihood estimate for the
spewm far pobjv= k is dthe-

Tr i1S PriIT.- ~OX (2-14)

fzra41-al ma=s SEof the eiu <2z Ms T.-;rT&23y this aqua:ým =-W&o be SDlv-d for 1: ekolizhlly
az-i _i heradm !2dmigmi Lv demr-mining - umuaxif= NvA-zood esmarna must be used. The
cZkotthmn w~ed in 11,23 Lik fte PM 4g-Lihm. Otmc impozaai gucsr'cit vwhih this er~w -- Odresses is the
iz?3 -S of Muaxiim= ikdamod Saochuils. P~~otdcived± in tic f-OuTh to sa tiat a suflicient
co-1irion ior Pxn iniquames of cza-im=. MmUic~d rtima-= is thzx Cm ranr=-R-w- losmc bamd be

& Cramner-Rao Lcwar Bouand
This sr=coi a Cc~inz~k.J~iv-.6oof th rmrRnlwrh~ o sisdetmtsof !.h:e cov-ariance
tniautxcs for the pn*L-ms fracm Stcdmt 2. It is injxin= to z-arsembez that, Icr bimsd w~tmaxes, the lower

b~df t a. of the csuirxAases is tpon9cia to thi-L btond.sa tý-3nltc are reluvaifbr
thatcm z wa-in , f- rmm--n Miboa egawimprorchrre canw1h irý ý i u

bbarcy gnerats bi~d esftimare fmr th- sca=m ssiuples un&r c=ri coznditios jr4.
Fob~vi Van T.-aes M! P. W]. the vzim= ne f any unbismd nuxdm-am V-ahbood tstimato of a
moamundo parae= zs grved the- or eqral to me ffiagnoa ekeni= df Ac ivnvse of mhe Fisher
-ffoanum mauix. 'The, Fihe knfoniis niarix has castie cqual 2% tLe *-egadve c: te ecnected ae
or ect the derivzxivzs of L(rl) with resmea trohe paumnzetesn fth case

'I ~~Lemma L, Fbr ptjul k. the mr,n element of the lisbeý, infcimaic martim equ;*s th-n magnitud squared
of nm-n element of he an

ri: WP1k + (CID

P~roof:in tha appendix of [1] an exptssirm fir. the rcc defi-maifti of L,,rXv) !s ol.Pined.. Taling the

Ilhe above resul is vvezy immntit for fth simulatios ik order --.; determine the verfcarmwace of the
onimii~ schrwn used. Sv-ne of fte sm airm sý perfomed kn =o Labm.-oy =re reparted in [4] and fth

performnve is compmed to this bound. In adi tIe algrcxillz pruspooed in [1] is compared to odwe
21oru~s fr m= Tinsezui saruples and it is shaw~i ihem in rtzai cases this algorithm. ouipdfomms

On~e of tbhe gwbl of calzalating the Craunc-Rao bound in tD use it- x- daezemh tbhe well paadnessf.

Lemlma 2.' Fa orU ox~An-- fte ra* a the; Fisber infoandimio mznix- is lzess dma or equal to, 21N4-1.
Fb~mote, if P >2N-1 te brsno migmq Xpcsiitn dcar.1 which mwximizes the- loglkliood

PromvL lbe woof invo-lves writng dre Fisher infiormawmtio arri as fth product of thrve mammis m-e of
which is 2-1ýXMN-L -tbh rznk of this mari-,zx is da.- shown tw be less than or equal to 2N,-1- The third
matrix is the Hermitinn tazaspoe of the firmt Th fiv arxi b N1adhskmdmrtgven b

1 (3-2)

wheze k denoams fire row and nmgcs trout 0 !o P-1 2ad mn mnges fotm 0 to -.'2N-2 Let tire aS elementl of
Qt (Wf'Z1 +No[Nj7 be dencied byf z. 'The the inr delerni~ of the -second matrix is

where mi and ni cr-n front 0 tD 2N-2 and *den==e cornple conjuame. Multiplying these d=e atie
ccxnpleesthe lirst -,rt of the pooL For the sýad part of ;he proo&~ ai is easiy shown that the addition of
a real dflagraml matrix with catfies 231 of the- srme inagid with Olnemadin sign to any Mimuix doe not
chaqgc the- -vae oa the Ikvffihooi if P>N-1. Tius no ixosride definite I yields z uniqae vain:t for the
kliotOýi By the anme xauments, no 1: wih one di-aronal cary equal to 0 and the remt potstive Nields
a unique- valaue of L (r .:T4 If rwo elemet am- zario. how-eve r. th agiunen falls and ochz- tests must be
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usedO
Lemma 2 gives a precise statement ?.bouz the uniqluenes of maymI1 likelihood eIsaieS for the
jNmob'ers unde consideration. in particuar, it stale pecis-.4 the number of pamriuele which can b-,
estimated uniquey for a problemn of qpe one. We believe the boLur-i -s tight. Tai, for aproblem of type
onewe belvethata uniquemaximm lkelh-ood estima exist ,.-ever P52?J-l and that the Fiser.
infounation matrix is of rank k'fir this case.- The basis fbr d&i belief ' s that the fust matixi canputed in
the prodf has full row rink frP•521-L F-m- cases of intest. :he second iwatrix constrmtd is of ftffl rank.

~~ ~ if this second 1atr- is of fBl rank, the inequaliy in fth f=s sentence cd the lemra- sttm ent can be
changed to eqamity.
771he proof of fth last I==m did not require that the elemens of the r matrix te eanties -frm ?/p- It only
required a cr in szaxionaity pnoperty..

Laemma 3: LPA the imn elemeni of 171 be ga,, and sup=o that gi.eg, = hk-,- (the product depend only
on fth rw number and the cliiffieuc mnn.4 The fth =*n of fte Fisher information mat& is at most N-

and if P >2NJ-' theme is no unique, Zpositive e finte bh= taiie the koglikeliod.
Pro:Modify -th prodf of the last lmma by changiing the firs matrix to have. krn element hk,.- 'T'he

paof ft Jim ustpis then ienical tDthat prof. To show tha themis no uniqw we conm= uca
* matrix suh that if this murna is aided to~ Mhen thc value of fth logmlielood does not change. This

6agmi ermt& matrix isfukmed as follows Ltv fecthei- row of r,,. Thuen vz have

Tinpmej~a d~~m f tis ~td amcompletel determind by the elements of the outer products of T
* ~ ~ irhw itself for i from 0 to P-L Fbam P zow vectors with fth elements cf dh=eoue products by takng the

Kxwxkecker prodwmt of -. with vf. Take- th= P vecros. trankpots: them, and put~b thin the coimas of a
N2xP matrix. Denote- this mTrix (if. Tlis mmtr& has rnk at most 2N-1 over the complex niumb=r &de
to the stafkiomry assumption on elements of r& stated in the lemma. The 2N-1 lineariy indcoendL-ri rows
hame i- element hi, a.ce of theme linedy hxepiendent rows has all real elements WilEt the oters are
im general comxnp- and appez in complex cnj~ugate pairs (Lbhe real row has entre ijo= Igi,. 12' Thus

* ib~tis matri hes oiumn rank at most 2N-1 -hen taen over fth real immbtms Any real vect= in the kemel-
of this matrix may be placed, along the diagonal of a -ari and then aded toEvizot changin ft-he ab

* of L(rE) becausi. the diazamal matrices fanmed in fbis wray have- the property thai they are muapped to the-
-~~~= - appix when irernulbipied by 11 and pmatndhilied by rt-n

Again the bound is fightbcas in gmeneal fth matrix funned of Krdned=e produncts of the, rows of Fk wil
have rank V-1. over the reals. Usinz the ma=ri G defne in the proof of Lemma 3 a much more general
reszimrav be obtained.

* LemmA= 4: Let G be thePxN2 matix whose i* row is the Kroneker product of -,* wiih -e. As=u z that
K,. is positive definite. Then the Fisher inforamatio matrix is iýngalar if 2nd only if the rank of G is Less
than P. If a positiv definite Z ields a unique m-aximum of the laglikdihood funncdw then G bas =ak P.-

Prvoo The Rdshe infonatbon matix may be wrnuen as

G ~K~T')G~(3-5)

If K, is nonsingular then the rank of this matrix equals the rank 6f G and it is singuAr if and only fi he
zank ofG is less than P. If the- nk of G is less thanP then pick arealvetr such C=atSTG =O0(such
an s xists becanc the Fis=herifmton m ati has real entrie). If the--e- vecto elements are- placed
alcog fte diagna of a matrx and added tD Z the. matrix K,. remtains uncbznged a-nd thus the loglikelho
is unchanged. On the orhehand, if therank of G equals P. then ther is no such ve=tos and any change
of !Lediagoal entries of Z yialds adlferent K,13l

4L SignaISdeediou
Ihis section uresents s=me new diurang an the problm of signal seleci for zadarT imagig sysstems 'The

Ixac is nmew-him goenel and it can be changed to fit sevral problemrs of nest



Iof= 27~~hst mndarimaging are baed on detmimistic tedinine TyicafBy. the refeciomsfrom
the =arget --e assumed to be deretrinsc and the rad reims ameprocessed using a wo, fimmnsiomal
transfeem technique. The uzasfixm used (or in geneal the linetar proessig seeeused) may be
modified for tl--- problemn a hand, but fte overall processing sctm is fixed. The signal selection p;oL-m
may be h=At ofiin 2coqýe of dffie=etways. One way i eeths ica thic stiizshel
Jretr for th~e pocesing sceeUS:d. For exmpler, =tpped frep=mency wa-fbzms descrbed in [5] may
be dmogh of as cpfimizing the signal assaming th= two cfimesional Fourier nansforms are used to
proc- &Pe rada return In arh& words, this trausruicd signal aner~ to make, ft remmr signals took
like the two dimtnsioma Foruier =zasform of the target ixntage A second type of signal selec-tion is mome
geoeral. In fbi ase. the ignal is selected tD achieve pulse -omesI : so that by combining the reamred
signal pippery the resri of xcssing achieves desired anzge and csran=ge- resolufion [a
Our apso~ci for nula imning &ff=r firom conventirmal appronches by startig froum a model -which
arccatiely acoat for the true namne of rada reffections T=he iea=u on the physics of radur
refleatios [3.6] sttsthat the re=cin r random not deetmrnistic We stat with a model whtich takes
iran 2"'orn. this randocmess (fth discrete- vezsxia of this mod-l is given by pmolem three above). The
processing to obtain the -best' image as then derived [1]. Ibis iroccs~ing is valid for any mrasmitted
signal 2s kxag as the model is valid. Thus, this prrcsing could be used on :be tadar ra=rn from any
s-se wresenrly implemealed if the wtrgt falls into the category covered by the model. Wat we aim to
do in this %s-ctx"n, o the paper is to bauroduc a proccd=r ficr selecting the transmitted signal optimally.
The^ signal is seleced to maximize- a meaue of the achieval perfor~mance The- potetial u= of this
procedur in amrz-i and open qutsdocus whiich we are exploing ame addessed shortly.
TneC measure W.Air is used to detemine- the- relative mc&i of a tmransitted signal is fte performance- uhich
is iehv-ahle. The pefformanc is measured in term of fte Fisher infcmnzxaion mzanix..
Definitiou Lat S dmenot t!he seE of admissible signal marries Any sipga matr S ES define a M2=ri 173
from (2-10) and a PxN2 matix G as defined ýin L=--a 4- L-., 92 deacr the set of possible target images
fori LaGj-fla be a £iven nmrr on Px mztrices -, signal rnatixS4ES is saidto be optimnal ifS schiem-es

The thretecbieczswhich m= sbecgiven in ordtr toauempt to cal-cueiheiriotimnalS 2m S. ,(lmadf- In
Order to simp~lify the derivatioa, we asszrae that the se of possible target images, C. has only one mcmber.
L. Ibis esiconwill be &scussed h"-. For the norm, thet mace- ovmzaor is chosen Since all of fth
Ma2ie under consideration ame hennirian syammkti and Dositive sernideEnit-, the truc a 9 always gm=te
thancr eq!al to ze= and is z= o*l when all of the eagen--al=e ate zeo (and hence the matrix is tezr
matri because it is szmia to a z=r mamiix). The- tract is addfitive so the rianale inealtyý holds and a
sMWaiartims a amai sMales the trae.- Ibus fir the set of posintiv se-midefinize hermitian yrnri

9matdceshthft isava-.lid nom

not devmnd oa the signal magulindt. =n would d=ec thtinceasing the transmitted energ vWld
d~e=a fth eff et of uxhe norse. Thi is fth c=s =anly-6cally also. Parmaeterizee the signal mzari as

STFz.where Ei may be thught of as the tranitted energ. Obviou~sly, r3 mxany then be wnunas
f3ee is obtained from r3 by substiutng.S for S. Similry. rom (21J0) andiP(211)

K 3 =Ern3f E3 3. (4-2)

and

K, =L~K3-:- JU (43)

From f3 form ft-e mati m e~ a G was foramed from 1's. Then the 9isber informationmai

(3-') rnay-eeii as

iA ~~ +1Jjy)~~ ]Gt G dK 3 + EW )iyt01W KV3 +~c':I,~] 1 4

Lettin-gzE go-, la1 erae he eigerival=e of -Ifs + QNaE,)IN. inkcreassing the eievbsof is ziner-se.
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This incrases dre eigenvabes of the FLsb inkarmatiw mua=i and beace mrrawses its uam (the- chosen
norm). Thus if tbe signxal matri w=r xarcomarcnd iz sire, tz oparnal signal wovuld be Mnmit.

Tbere a= many ways to consmrin the allowed magnitxl of -5. Suppose that Y. S-+R1 is a measuree of
bow large S eS isL Thben wve may reftumulai the: privbl=es mzqaxtiz tbh- notrm of tho Fishe uibirm.Airm
rmiiatrsubjetct totheconstrint tbaLM(S)=E1 . Furec,-.mplý. if the ear-j is aqu&mzic.4snctimonf S.M
mnaybe selectedto be the tre of StS. Atds poiabe ea=is n atoima~s cg as it
cIn:tr.ic the largest value- any eleniet of c may take, Thbis is not to say that fth cpitariona-l resrjts
wil o dendan M, bensa dM vrL

Usiqg anmy standard text oni optimirzaion thioty (fer example, -,4- [M. a mesy condition fcr 1-,
sutoto thisproblemis thaththxexisraXaad anSiES scchthat

W-1G'(ý1KK 4)G1]3÷A'MS' =0. (45)

*M(S) =F, (4.6)

The prtaU derirathre, rf tbhe urra. of the- Fxst= rirfanmazioo matrix with reset= to S in the &rection ES is

Tr [;S MS ITA( S t v1 VS + STIV 85)] (4.7)

wt Mvi~ V S fl- frcM (2.9)~, (2-10), and theb nnyn discussio q=c that 173 =VS. After
selecting a pmtarrcuM the previous ecaazions 2me selved for the signal inatim

Th tapoah to signl --d on has tbhe disadvantage- that the equafkas to be solved wre Lighbiv Donlhla.
It should be- noticed tbat the- signal matrix ents fth partial deriv-Ative mme result both directly and Otlrrrh
the znaem K;4. Bvea tough thes equations may be d&fficait to solve, ik practise- they are usually
cotnpuzz-4edine- and thus would not, affect the realizability of the proposed system. Asy caasuwair on the-

* sips!l matrix are included in S and M so any signal onputed bry the- above schtma shiould pzodLitce an
hnt~ern=ntAblesianamato,

F SAs rn!niood pre'viosiy, fhe cboice of M plays a large pant in fth corupleodiry of the c~md=-k1rni- A good
M ~cboice- of M could yield 2 calclahmiw for the- signal matrix i. closed fom.a

The, results dehrivd so farpetain to the speci alese. wber- f= L In an "mplemnernzxion tre =aIta 1: is
cdkr=7n. One possible way mo take this into account is to trransmit m -til pulse&. Fer fte frs pulse.
rrarstni the signal which would be idea for some assumed genezri target (perhaps a niform spectum).

vh-is~b-u ote-ia m- b o~.z- fti cmc mus bt the age

,lipThisppe;- has rem major resalts on speczrm esdunasin probles.n where the observeod data is fth sam of
white nei:- and a linear combitation of a realization of a portio of a pexiofi~c process. The: results of each
pan 2me derived &ao the Crtare-.Rao lowea bound for th varimmc of spwazrm estimates. Toe firs set of
rmzr~m dealss with aulaniqes off snadmum hikelihood esiinames off &he spectntm snToles. in pm-aiclhax, if
thet MnshIm information matrix is siogrAar then thee. i!- r4 pos:ave definite spectrm wh~ich yields a mnque

* r~wduimnma fm the ikaboo fucir n. The- seco rnd set of results rioposes a new method for sele-cring radzr
sigznals bvsed inx tba- Fisher infornarion mztix Tkansxniued signal are selected to maximize the-
peformance achz-me.abietis ammmz-xed to mionimiz =h ofiac ohe esrimais of zrce ==etru samples
Thus tbhe magnsprdaced may be relied upont uith momevene
We re StIMl in fthPe cess df imiplerneaing the aigniitlir rcxsad in P[1I to proud=c delay d--.xter images-

u.nainzximumn Ikeliheo estimzrdý tecbniqes. Swam jauliingiay tVexpimcnis hare been- performed on
m-e dmimsirnra vcrSions of the: mpagig pioblemn =d The resulmsca prmising J.When goig toth
frill MwO dlirnEMsi21 F-02ZMn the- iSSBO 4f choosing a _9ood VMMMrSmte siga arises It is beped &Wa dhe
method prqposed we ll yeied henerg images Lhn fthse vvesenly sd
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